
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL.6, 677-713 (1986) 

ORBITAL FLOW PAST A CYLINDER: A NUMERICAL 
APPROACH 
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SUMMARY 

Orbital flow past a cylinder is relevant to  offshore structures. The numerical scheme presented here is based on 
a finite-difference solution of the Navier-Stokes equations. Alternating-directional-implicit (ADI) and 
successive-over-relaxation (SOR) techniques are used to  solve the vorticity-transport and stream-function 
equations. Theoretical simulations to low Reynolds number flows (up to  1000) are discussed for cases 
involving uniform flow past stationary and rotating cylinders and orbital flow past a cylinder. The separation 
points for cylinders that are rotating or immersed in an orbital flow are deduced from velocity profiles through 
the boundary layer using a hybrid mesh scheme. During the initial development of orbital flow surface 
vorticity on the impulsively started cylinder dominates the flow. A vortex then detaches from behind the 
cylinder and establishes the flow pattern of the orbit. After some time a collection of vortices circles the orbit 
and distorts its shape a great deal. These vortices gradually spiral outward as others detach from the cylinder 
and join the orbital path. 

INTRODUCTION 

Design of offshore structures is much influenced by the wave loading on component members. 
These consist usually of tubular cylinders. Plane oscillatory flow provides a reasonable analogy to 
the flow experienced by a horizontal cylinder under regular small amplitude wave loading very 
close to the ocean bed where particle orbits are almost flat ellipses. Away from the bottom, particle 
orbits form more rounded ellipses and close to the free surface they may become nearly circular. 

For numerical simulation of flow past a cylinder, two main methods have been developed in 
the past. One is based on superimposing discrete vortices onto a potential flow solution. The 
other involves a finite-difference approximation to the time-dependent Navier-Stokes equations. 
Although this method is limited to low Reynolds number flows and is expensive as regards 
computer resources, it is free from empiricism. A finite-difference approach is used in this paper. 

A brief review of the historical development of Navier-Stokes finite-difference models has been 
given by Borthwick.'92 

The main disadvantage of the Navier-Stokes finite-difference method is that it can only be 
applied with justification to low Reynolds number cases where the flow is laminar. Turbulence is 
not modelled, and would present problems beyond the scope of this paper to include. Therefore the 
solutions are limited here to Reynolds numbers less than 1000. Although the method gives a more 
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Figure 1. Cylinder immersed in an orbital flow 

exact theoretical answer, it is more complicated than the potential flow model, with an 
impracticably small mesh required in some cases. 

Stansby'~' has developed and improved numerical solutions of steady and planar oscillatory 
flows past a cylinder using discrete vortex models. He assumed that the separation points were 
fixed close to the cylinder centre plane to the incident velocity. Lack of information about 
separation and the accumulation of vast numbers of vortices cause major empirical problems in 
these discrete vortex oscillating flow models. 

As far as can be ascertained a Navier-Stokes finite-difference simulation has not been applied 
previously to either planar oscillatory flow or circular orbital flow problems. 

FUNDAMENTAL EQUATIONS 

In studying orbital flow past a rotating cylinder it is convenient to consider a rotating frame of 
reference. The absolute acceleration 

must be expressed in terms of derivatives of the relative velocities as discussed by Raudkivi and 
Callander.' 

Figure 1 illustrates orbital flow past a rotating cylinder, where the centres of the inertial and 
moving frames of reference coincide. This is equivalent to the flow around a horizontal cylinder 
under regular deep water small amplitude waves where particle orbits are almost circular. 
Neglecting the decrease in magnitude of velocity components with depth and the slight forward 
progression of the particle orbits with time, a constant velocity vector rotates with uniform angular 
speed around the cylinder. 

For the experimental work undertaken by Holmes and Chaplin' and Borthwick' a frame of 
reference was chosen so that the cylinder revolves around a circular orbit while rotating on its own 
axis, as shown in Figure 2.  In the diagram, the unit vectors I and J act in the xo and yo directions 
respectively. Then 

R = IR cosn t  + JR s ina t .  

I t  is now possible to write the Navier-Stokes equations in polar co-ordinates for this frame of 
reference. From continuity, 

(2) 

av, avo 
ar 80 

divq = V, + Y- +- = 0. 
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Figure 2. Inertial and moving frames of reference for a rotating cylinder revolving around a circular orbit 

The radial and tangential momentum components are 

1 av, av, v,av, v2 -+ V - - - - + - - - ~ - - Q ~ R ~ ~ ~ ~ - Q ~ ~ - ~ Q V ~  
at ar r a d  r 

and 

1 avo avo v,av, 
p - + Vr- + -- + - R2R cos 0 + 2QV, [ at ar r ao r 

Letting r' = r/ra, V :  = V,/U,,  Vo = V,/U,, t' = tUm/r ,  and P = ( P  - P,) /pUz ,  etc. the flow 
equations are non-dimensionalized. The Reynolds, Keulegan-Carpenter and Strouhal numbers 
are defined as 

2.f ra 
V Qra u m  

and S = - ,  . 2U,ra nu, R e = -  , K C = -  (4) 

respectively, where f is the vortex shedding frequency. The velocity components VL and V, are 
defined as 

The vorticity, w, is given as 

Hence the parabolic vorticity-transport and the stream-function equations are obtained as 

(7) 
awl 1 a(vow') 1 a(r'v:w') 2 1 a 1 a 2 0 1  

--+7- aei +7 art = - Re [ - r'ar' - [ r f g ]  + I.'*] at! 
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a2$1 1 a+! 1 a 2 q  --+,,+--= - - I .  

r d r  rI2 a e 2  (8) 

The above equations can be rewritten in log-polar form with the use of the transformation r' = eaz 
and 8' = ad. From now on the primes are ignored. Equations (5)-(8) become 

and 

where E, = a2ezaz 

NUMERICAL SCHEME 

The domain was discretized using a coarse regular mesh and a hybrid mesh. Finite-difference 
approximations to the flow equations were applied at each node. The velocity components and 
stream function equation were adequately described by central difference approximations. An 
iterative process involving successive over-relaxation was used to obtain updated values of stream 
functions from the stream-function equation. The iterations were terminated when the difference 
between successive values fell below a preset error parameter. The vorticity-transport equation was 
solved satisfactorily by the use of an alternating-directional-implicit (ADI) approach. Spatial and 
temporal accuracy was achieved by varying the fineness of the mesh and using a Neumann stability 
criterion given by Thoman and S z e ~ c z y k . ~  

Borthwick'-2 has already described the coarse mesh for a uniform flow problem. For this regular 
mesh a log-polar co-ordinate based 'rectangular' grid was used which lends itself to simple 
numerical treatment. Lin and Lee,8 Son and Hanratty,' Martinez" and Thoman and Szewczyk7 
have compared results obtained for grids with various spacings of Az and AO. Lin, Pepper and 
Lee" suggested a time step, At = 0.02, for a similar grid to the one used here, for Reynolds numbers 
less than 400. As a result the discretization parameters used for the rough grid in this case are 
A Z  = A0 = n/45 and At = 0.02. 

The coarse mesh is unsatisfactory because of the enormous number of points required to model 
the conditions within the boundary layer while ensuring that the outer boundary is located at such 
a distance that it has no effect on the near wake. Therefore a hybrid mesh similar to that devised by 
Thoman and Szewczyk7 is also used, in which the flow region is divided into inner and outer flow 
areas. 

The inner flow region extends from the surface of the cylinder outward until it blends into the 
outer flow mesh. This inner region is divided into cylindrical cells of constant angular increments 
A0 = n/45, but with varying radial increments. The initial radial increment is sized according to the 
particular Reynolds number being investigated, and each successive outward increment is 
increased by a factor, K ,  to give a sensible model of the boundary layer. 

Thoman and Szewczyk7 suggest that the radial cell width at the cylinder surface should be sized 
to be 1/12 of the steady-state forward stagnation point boundary layer thickness. This stagnation- 
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thickness is defined by Schlichting” to be equal to 2 4  r , / , /Re ,  where r, is the radius of the cylinder. 
Thus the radial cell increment at the cylinder surface is taken as 0.2IJRe. The second cell has a 
radial increment of K times the first, and so on until the cells have reached a suitable width to blend 
into the outer region. A value of 1.5 for K was found by Thoman and Szewczyk to be adequate for 
their computations and is adopted here. 

The very fine definition near the cylinder surface is achieved without the penalty of requiring 
a small computing time increment for stability because the maximum radial velocity component 
is very small near the cylinder surface. 

The outer region is composed of a cylindrical mesh which becomes a Cartesian mesh in the 
log-polar domain. The position of the outer boundary is at least 80 radii from the centre of the 
cylinder. 

FINITE-DIFFERENCE QUOTIENTS 

The method of finite-difference quotients proposed by SchlichtingI2 is used to approximate the 
flow equations in polar form when applied to the inner region until it blends with the outer 
region. For the inner region, which encompasses the boundary layers, spatial accuracy is improved 
from order (AO’, AZ2)  using central differences to order (A02, Ar’) using finite quotients. This is 
a major advantage of using finite quotients. In the outer region the flow characteristics vary 
more slowly and so the same method as used for the regular mesh scheme given by Borthwick’*2 
is chosen. In the outer region the flow equations are expressed in log-polar form and approximated 
by central differences. 

The finite-quotient formulation is now described for part of the inner grid, close to the cylinder 
surface. This is shown in Figure 3 where A8 is the constant angular increment and L\rj is the 
varying radial cell increment. From the properties of the grid the formulae given below are known: 

and 

Arj - 
K=- ; A r j = i [ A r j + A r j p 1 ] ,  j = 2  ,..., M-1.  

A r j - l  

jtl 

Figure 3. Diagram showing part of inner grid 
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Schlichting” obtained the following finite-quotient approximations for the derivatives of a 
function ,f at the point i,j: 

1 
==CL3f i j - l  + L2fij+L1fij+1}, 

ar i j  2Arj 

where 

L, = K - l ,  L, = ( K 2  - l)Ll,  L3 = - K ,  

and 

where 

P, = $ ( K  + l), P, = L,, P3 = 2P, P,, P4 = 1. 

The point at which the inner mesh blends with the outer is defined as j = NOJ. It should be 
noted that K does not equal the fixed value of 1.5, but is equal to ArNo,-l/ArNo,-2 when 
j = N O J -  1. 

SOLUTION OF THE STREAM-FUNCTION EQUATION 

The stream-function equation is rewritten in finite-difference form as 
~ - 

$ i j :  = {2r j2ArfAe20i j+r jAe2(2r jP1 +ArjL3)tjij-, 

+ rjA02(rjP3 + q L 1 ) , b i j +  + m($i+ l j  + 
+4Arf), j = 2 ,  ..., NOJ- 1 

lj)}/(Pl P, 2rj2AOz - L,rjAB2drj 
~ 

for the inner mesh, and 

for the outer mesh. This is solved iteratively, using the method of successive over-relaxation. 

CALCULATION OF VELOCITIES 

The radial and angular velocity components may be expressed using appropriate finite-difference 
approximations as 

j = 2 ,  ..., NOJ- 1, $ i +  1 j  - $ i -  1 j  Vrtj = 2A9rj ’ 

j = N O J ,  ..., M -  1, $ i +  I j  - $ i -  1 j 

2 A9EfI2 ’ 
vrij = 
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and 

- + i j +  1 - + i j -  1 , j = N O J  ,..., M-1.  
2AZEfI2  Veii = 

EVALUATION OF TIME STEP 

For the solution of parabolic equations, such as the vorticity-transport equation, Roache' 
recommends the use of a von Neumann stability criterion, like that proposed by Thoman and 
Szewczyk,' for the time step. The condition suggested by Thoman and Szewczyk relies on the 
cell Reynolds number Re,, and can be written 

dt < smallest value of ( 2Re ), j = 2  ,..., M-1,  
dij(4 + Re,) 

where 

R e = -  2 R e { l v o  --'+- 1 l;;l], j = 2 ,  ..., NOJ-1,  
dij A6 

2Re V, 
Re =- 2 + __ , j = N O J ,  ..., M - 1  ' dij ( I A 6 (  l:;l] 

and 

- 2  2 
j = 2 ,  ..., NOJ-  1, d . . = - +  

" A02 ArjArj-l 

L L d . .  = - + ~ 

" A02 A Z 2 '  

(15) 

j = N O J ,  ..., M -  1. 

In order to ensure stability the actual time step used is At = 0.8 dt. 

THE VORTICITY-TRANSPORT EQUATION 

Thoman and Szewczyk recommend the use of an 'upwind differencing method to approximate 
the advective terms in the vorticity-transport equation. However, the application of this approach 
gives unsatisfactory results, as shown by Borthwick',2 where artificial viscosity damps out vortex 
shedding. Therefore an alternating-directional-implicit (ADI) scheme is used for the computations 
included in this paper. 

The AD1 method was first developed by Peaceman and Rachford14 and an optimized procedure 
suggested by Wachpress.' Several authors, such as Dey,16 Spalding,17 Runchall18 and Ha 
Minh et. ~21.'~ have discussed the AD1 method in detail. Dey16 showed that stability criteria are 
not violated up to high Reynolds numbers. Spalding17 and RunchallI8 proposed an improved 
method based on the local Ptclet number (i.e. the cell Reynolds number, Re,). 

In the AD1 method used here, equation (7), which governs vorticity transport, is decoupled 
numerically to give 
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k Re am - - - (.>* ( g)k + r ($>" + ($ ) 
and 

mk+ 1 / 2  " r ( m k + l  2 6t/2 - 

(1  6a) 

in polar form, and similar equations in log-polar form for the outer mesh. 
Rewriting and rearranging equations (1 6a) and (1 6b), using finite-difference quotient 

approximations to the derivatives, gives the following expressions, which are applicable to the 
inner region: 

and 

Similar manipulations are performed on the log-polar form of the equations using central 
differencing approximations to the derivatives to give 
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Two linear systems of equations are obtained which are solved as follows. The first directional 
‘release’ has the boundary condition wN+ l i  = w1 on the 6 = 0 axis. It is now possible to set up 
a tridiagonal matrix equation of the form r b ,  

- a 2  6 2  ..-c2 

--.. --. -.. - _  .. 

- ai‘“bi _. 

It should be noted that lagged values of the vorticity terms m i j  and wij ,  instead of unknown 
‘fictitious’ vorticities and w;i+’/’, are incorporated in the expressions for KT and 
K ;  in order to make the matrix tridiagonal. 

The second directional ‘release’ requires the use of two boundary conditions for the vorticity. 
The vorticity is given by equation (6). At the cylinder surface the radius equals unity and the 
radial velocity is zero. Using a central differencing approximation the vorticity may be written 

The outer boundary condition is 

w i M  = w i M  - 1. 

Using these conditions, the following matrix equation can be constructed: 
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Using recursion formulae and Cholesky decomposition, equations (19) and (22) are solved to 
give the updated values of vorticity throughout the mesh. 

INITIAL AND BOUNDARY CONDITIONS 

For the orbital flow case, the axis of the cylinder is considered to be stationary relative to the 
flow, as shown in Figure4. The cylinder appears immersed in a forced vortex which has its 
centre some distance, R, from the cylinder and rotates with an angular velocity, R. The forced 
vortex is applied along with a theoretical doublet and real (potential) vortex representing the 
rotating cylinder to yield 

where 

It should be noted that the expression for $; has been corrected in order to ensure that the 
surface stream function $ y j  = 0. Owing to the presence of the forced vortex there is a uniform 
initial vorticity 

This is derived by considering the rotationality at the outer boundary where the velocity 
components are known. 

Various authors, including Dennis, Hudson and Smith,'O Dennis and Chang" and Martinez," 
used an Oseen vortex solution for the outer boundary vorticity for uniform flow past a cylinder. 
Dennis, Hudson and Smith obtained the following expression: 

ezM-l)(cos 8 - 1) - + ( Z ,  - Z,- 

This equation is cumbersome and is limited to low Reynolds numbers and small grid sizes. 
Otherwise, unmanageably large numbers are generated within the computation process. A simple 
alternative which involves assuming a uniform vorticity gradient dw/aZ = 0 at the outer boundary 
gives equation (21). This was found to be quite adequate for both uniform and orbital flow 
problems. 

The outer boundary stream function is assumed equal to the potential flow stream function. 

" f  
X CENTRE OF FORCED VORTEX 

CENTRE OF CYLINDER 

Figure 4. Orbital flow representation 
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Thus 

*. rM =*+ I M '  

The radial and angular velocity components at the outer boundary are given by 

and 

The surface boundary vorticity is given by equation (20). In all cases the surface boundary stream 
function and radial velocity were fixed to give 

$ i l  = Vri, = 0. (29) 
The surface angular velocity of the cylinder must be the same as the angular velocity of the 
forced vortex in the orbital flow case. Thus 

VOi, = R, where R = 7t/Kc. (30) 

CALCULATION O F  SURFACE PRESSURE DISTRIBUTION 

A reference value of surface pressure PI 1, close to the front of the cylinder, was fixed at 1/2 for 
the orbital flow cases considered. 

After some algebraic manipulation the angular components of the Navier-Stokes equations 
can be reduced to the following expression: 

This is rewritten using finite-difference approximations to give 

Using a third-order Lagrangian polynomial to fit the vorticity gradients it is possible to obtain 

( K  + 2)(K2 + 2K + 2)(K3 + 2K2 + 2K + 2) 
( K  + q 4 ( 1  + K + K Z )  [mi2 - mil 1 @I ar =5,/Re{ 

( K 2  + 2K + 2)(K3 + 2K2 + 2K + 2) 
K 3 ( K  + 1)4 - [mi3 - mi21 

( K  + 2)(K3 + 2K2 + 2K + 2) 
K 5 ( K  + 1)4 [mi4 - mi3 1 + 

( K  + 2)(K2 + 2K + 2) 
- Cwi5 - mi41 K ~ ( K  + 1 ) 4 ( ~ 2  + K + 1) 
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(K2 + 2K + 2)(K3 + 2 K 2  + 2K + 2) 
K 3 ( K  + 1)4 

- C0i+ 1 3 -Oi+ 1 2 1  

( K  + 2)(K3 + 2K2 + 2K + 2) 
K 5 ( K  + 1)4 Cwi+i4-0i+i 3 1  + 

- (K + 2)(K2 + 2K + 2) 
C ~ i + 1 5 - ~ i + 1 4 1  K ~ ( K  + 1 ) 4 ( ~ 2  + K + 1) 

The surface pressures are now computed by stepping numerically around the cylinder in an 
anticlockwise direction, from the reference value, P, 1. The resulting pressures are expressed as 
a coefficient Cpil given by 

c PI . 1 = 2Pij. (34) 
Using this method the surface pressure shows a mismatch at  the ends of the closed loop. 
Thoman22 suggested that the degree of mismatch gives an estimate of the numerical error and 
found that mismatches as much as 5 per cent of the total span sometimes occurred in his 
computations. In the work presented in this paper, the closure mismatch was largest at earliest 
time stages when the vorticity gradients close to the surface were largest. 

It should be noted that a more exact approach for the evaluation of surface pressures has 
been developed by Collins and Dennis23 and Badr and Dennis.24 They used Fourier analysis 
to reduce the governing vorticity-transport and stream-function equations to sets of time- 
dependent equations which are solved numerically. Their method ensures that the fluid pressure 
is exactly a periodic function of period 27c and that the circulation round a sufficiently large 
contour remains zero. 

DRAG AND LIFT COEFFICIENTS 

The drag and lift coefficients, c d  and C,, respectively, are obtained by performing the following 
integrations using a Simpson's rule numerical approximation: 

and 

RESULTS FOR UNIFORM FLOW PAST STATIONARY AND 
ROTATING CYLINDERS 

Both the regular and hybrid meshes were used to simulate uniform flow past a stationary cylinder. 
Three Reynolds numbers were investigated in detail, namely 100, 200 and 1000. Figure 5 charts 
the development of the drag and lift coefficients determined using the hybrid mesh. The drag 
coefficients have higher values than those computed using the coarse regular grid discussed by 
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Thoman and S z e ~ c z y k . ~  Stream-function, vorticity and velocity distributions and velocity profiles 
through the boundary layers were also computed. It was observed that the hybrid mesh scheme 
gives a valuable insight into the behaviour within the boundary layers, unlike the rough grid. 
Also, higher Reynolds numbers can be investigated. In general, the results agree with those 
obtained by Thoman and Szewczyk. 

Thoman and Szewczyk7 also examined several cases of uniform flow past a rotating cylinder. 
They chose various speeds of rotation greater than the incident velocity in order to study the 
Magnus effect. Although one comparable case is presented here, the rest are concerned with 
cylinders rotating at a slower speed than that of the incident flow. In orbital flow the surface 
of the cylinder rotates at a speed given by .n/Kc, where K c  is the Keulegan-Carpenter number. 
For example, when K c  equals 12 or 24 the surface velocity is 0.2618 or 0.1309, respectively. 

Recently published experimental work by Coutanceau and Menard25 and numerical 
simulations by Badr and Dennis24 have examined the near wake development behind an 
impulsively started rotating cylinder under translation in uniform flow. In their complementary 
investigations, the relative speeds of rotation varied from 0 to 3.25 for Re = 200, 500 and 1000. 
In particular, Coutanceau and Mknard present flow visualizations for Re = 200 and relative 
velocities of 0.28 and 2.07. These visualizations agree closely with the numerical results obtained 
by Borthwick’ for Re = 200 and relative velocities of 0.25 and 2. 

Figure 6 shows the development of drag and lift coefficients with time for speeds of rotation 
ofO.l,O.25 and 2 at a Reynolds number of 200. For the two lower speeds, the drag coefficient attains 
a similar mean value, close to 2.0, with a uniform sinusoidal component indicating vortex shedding. 
The onset of vortex shedding occurs earlier at a relative speed of 0.25 than at a speed of 0.1. 
However, the drag coefficient obtained for the largest relative speed of 2 shows that any initial 
vortex-induced oscillations die out, and the drag coefficient settles to a constant value of almost 1.2. 
Similar effects are noticeable in the plots of lift coefficient with time. 

Comparisons of computed and measured mean lift and drag coefficients are given in Figure 7. 
There is a large scatter in the measured lift coefficients, owing to the influence of the aspect ratio and 
end conditions as described by Swanson.26 Thoman” calculated a higher value of drag and a 
lower value of lift than the author for the largest velocity ratio of 2. The differences are due to the 
use of the AD1 method here instead of the upwind differencing approach used by Thoman. 

The mean lift coefficients presented here lie between those expected for an ideal fluid and those 
measured experimentally by for a Reynolds number range of 53-84 x lo3. Further 
consideration of Figure 7 indicates that for low velocity ratios an increase in Reynolds number 
from 200 to 1000 causes a slight reduction in both drag and mean lift coefficients. 

The velocity profiles through the boundary layers do agree reasonably with those computed by 
Thoman” and measured experimentally by Swanson.26 This is illustrated in Figure 8. 

Obviously, increases in the relative velocity below a certain value bring forward the onset of 
vortex shedding and increase the magnitude of the mean lift coefficient. However, there exists 
a transition point at  which the rotational speed of the cylinder becomes sufficient to dominate 
the flow and so suppress any vortex shedding. Figures 9 and 10 demonstrate the tremendous 
differences in flow patterns obtained by varying the rotational speed from 0.25 to 2-0. For orbital 
flow, this may be comparable to decreasing the Keulegan-Carpenter number from about 12 to 
1.5. In other words, for an orbit small enough relative to the cylinder, vortex shedding could 
be effectively damped and a Magnus-type increase in lift experienced by the cylinder. 

One difficulty, encountered when considering rotating cylinders, is that the separation points, if 
any, cannot be readily determined from the surface vorticity distribution. Sears and Telionis28 
suggest that in non-steady flows separation occurs when the shearing stress at an internal 
stagnation point vanishes. Thus for separation 
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LEGEND: 

Thornan (1966) Borthwick 

Figure 7. Comparison of computed and measured lift and drag coefficients 

(37) 
a Ve 
ar 

Ve = 0 and __ = 0 in the interior. 

This condition is known as the Moore-Rott-Sears criterion,” and is applied here in order to 
estimate accurately the position of the separation points with the use of the velocity profiles 
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Figure 8. Comparison of computed and measured tangential velocity profiles through the boundary layer for a relative 
velocity of 2 

Figure 9. Stream-function and vorticity contours: Re = 200, Vo,, = 0.25, t = 63.665 
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Figure 10. Stream-function and vorticity contours: Re = 200, Vs,, = 2, t = 48.437 

through the boundary layers. For example, on studying the plot given in Figure 11, at a time of 
58.656, for a Reynolds number of 1000 and speed of rotation of 025, the surface vorticity passes 
through zero at 91 ". However, consideration of the velocity profiles through the boundary layer, 
shown in Figure 12, demonstrates that separation actually occurs at 114". Examination of the 
overall velocity distribution behind the cylinder, in Figure 13, confirms this. 

HYBRID MESH RESULTS FOR ORBITAL FLOW PAST A CYLINDER 

An orbital flow with a Keulegan-Carpenter number of 12 was examined for Reynolds numbers 
of 100 and 1000. The number of numerical investigations carried out was restricted by the very 
large amount of computer resources required. More than one hundred seconds of time from a 
CDC7600S machine was required in order to compute each unit of dimensionless time for the 
flow. 

Plots of drag and lift coefficients with time for a Keulegan-Carpenter number of 12 and 
Reynolds number 100 are given in Figure 14. The graphs cover several complete revolutions 
where the period is equal to 2Kc.  These plots show that there is a large fluctuation in the forces 
just after the completion of each cycle for the first few revolutions. The sudden drops experienced 
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Figure 12. Tangential profiles: Re = IOOO, G,, = 0.25, t = 58.656 
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Figure 13. Velocity distribution behind the cylinder: Re = 1O00, h,, = 0.25, t = 58.656 

by the drag coefficient correspond to residual disturbances in the wake, caused by the impulsive 
start, passing around the orbit and colliding with the cylinder after each cycle. 

This effect dies out eventually. The fluctuating forces experienced by the cylinder then become 
almost entirely dependent on the vortex shedding process and the relative positions and strengths 
of vortices left in the flow. With time, the number of vortices residing in the proximity of the 
orbit is sufficient to distort the early circular pattern. The orbit itself does not disappear, but 
alters progressively from one configuration to another as vortices detach from the cylinder, move 
around the orbit and gradually spiral outward, as can be seen in Figures 19 and 20. 

Immediately after the impulsive start, the high values of surface vorticity generated swamp 
the forced vortex that represents the orbit. At a time close to a value of 1.5, a vortex reappears 
behind the cylinder and centres itself above the cylinder by a time of 105. Its position corresponds 
to that of the forced vortex representing the flow orbit, as shown in Figure 15. It should be 
noted that the centre of the orbit is assumed to be directly above the centre of the cylinder. 

The difference in velocity on the surface of the cylinder at points nearest and furthest from 
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Figure 14. Drag and lift coefficients: Re = 100, K c  = 12 

the centre of the forced vortex (which represents the incident orbital flow) causes an anticlockwise 
vorticity flux around the cylinder. Thus the wake produced is asymmetric. Greater amounts of 
vorticity are generated on the lower part of the cylinder furthest from the centre of the orbit 
and at  a higher velocity than the upper part. Therefore a curved wake begins to form behind 
the cylinder. The vorticity at the lower part of this wake, where the orbital velocity is greatest, 
rolls up, and by a time t = 8, a vortex detaches. This nearly circular anticlockwise vortex moves 
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around the complete orbit and by time t = 25 collides with the lower front surface of the cylinder, 
causing a sudden reduction in the drag coefficient. As the vortex collides with the cylinder it 
distorts to an almost flat ellipsoid and pulls some of the upper part of the cylinder wake over 
the top of the cylinder. This is illustrated in Figure 16. 

Meanwhile, by time t = 31, a second vortex detaches from the lower part of the wake behind 
the cylinder and starts moving around the orbit. The first vortex, which has lost a significant 
amount of strength owing to the assimilation of part of its circulation into the wake as it passed 
below the cylinder, becomes absorbed into a vortex growing in the upper part of the wake 
behind the cylinder. 

The portion of the wake that was pulled over the top of the cylinder detaches and flows under 
the cylinder as a vortex. It then spirals outwards, following the path of the orbit, rapidly losing 
strength. The wake establishes itself behind the cylinder again, at time t = 35.404. The position 
of the second vortex lies almost at the centre of the orbit, which is still fairly circular. 

As the second vortex continues to move round, a fourth vortex sheds from the upper part of 
the wake at time t = 42. The second vortex starts to collide with the surface of the cylinder at 
time t = 45, while a fifth vortex is shedding from the lower part of the wake behind the cylinder. 
The collision of the rather weak second vortex is followed by the impact of the larger fourth 
vortex at a time t = 53. This causes a similar effect to that experienced during the first collision, 
where part of the upper wake is pulled over the top of the cylinder and detaches as a small 
vortex. The process is illustrated in Figure 17 which shows the stream-function and vorticity 
contours at times of 48.802, 52-629 and 56-457. 

The approach and impact of the vortex on the surface of the cylinder causes large relative 
movement of the surface vorticity with corresponding dramatic changes in pressure. This is 
shown in Figure 18, where positive values of pressure are found at an angle of 240" approximately 
behind the cylinder, at  a time of 48-80. This positive pressure increases in magnitude (as do the 
negative values) and moves to a position of 320" at a time of 52.63. The movement of positive 
pressure towards the front of the cylinder is complete by t = 5646 when the pressure and vorticity 
plots settle to profiles fairly typical of steady flow. 

With time more vortices detach and move around the orbit; the wake having formed again 
behind the cylinder. There seems to be sufficient residual vorticity left in the orbital path for 
these vortices to be deflected outward and no longer impinge on the front of the cylinder. Typical 
flow patterns are shown in Figures 19 and 20. The flow can be considered to have settled 
somewhat after three revolutions. 

The wake behind the cylinder becomes quite asymmetric, with the upper part curling around 
and growing in the direction of the orbital path until its extremities break off and diffuse into 
the flow. The lower part of the wake continues to shed vortices, which join the others circling 
outwards around the orbit and eventually are diffused by viscosity. Typical stream-function and 
vorticity plots are given in Figure 21 which shows the flow pattern at  times t = 94.735, 99.519 
and 104.304 after approximately four cycles. The surface pressure and vorticity plots have a 
more or less constant form, as indicated in Figure 22, which gives the results at  a time t = 99.52. 
The same applies to the velocity profiles taken through the boundary layers, presented in 
Figure 23. The profiles remain similar for each case and indicate that separation is occurring 
at 160" and 240" approximately. This is confirmed by inspection of the contour plots. Obviously, 
discrete vortex simulations of orbital flow must take into account the movement of the separation 
points; otherwise, the model will produce incorrect results. 

The second case study deals with a flow of Reynolds number 1000 and Keulegan-Carpenter 
number 12. The drag and lift coefficients are given in Figure 24. They display rapid fluctuations 
with time. The most rapid variations occur at  times of 0 to 10 and 88 to 98 when a time step 
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t = 25.835 

t = 31.576 
Figure 16. Stream-function and vorticity contours: Re = 100, K c  = 12, t = 20.094, 25.835 and 31.576 
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t = 56.457 

Figure 17. Stream-function and vorticity contours: Re = 100, K c  = 12, t = 48.802, 52.629 and 56.457 
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Figure 18. Surface pressure and vorticity distributions: Re = 100, K c  = 12, t = 48,802, 52.629 and 56.457 

satisfying the stability criterion was used. An increase in the time step by a factor of 5 was used 
for the rest of the computation, and appears to filter out the highest frequency components. The 
cause of these rapid fluctuations is not known. However, regular vortex shedding is evident 
throughout the development of the flow. The sinusoidal nature of the drag and lift shows this. 

An initial sequence of events similar to those described previously occurs. At the earliest stages, 
surface vorticity on the impulsively started cylinder dominates the flow. Then a vortex detaches 
from behind the cylinder and establishes the flow pattern of the orbit. The vortex shedding 
process is much more rapid in this case, owing to the higher Strouhal number to be expected 
for the higher Reynolds number (in this range). This leads to large numbers of vortices circling 
the orbit and distorting its shape a great deal, as can be seen in Figure 25 which also shows the 
unsteady nature of the flow as it impinges on the cylinder. These vortices gradually spiral outward 
as others detach from the cylinder and join the orbital path. Secondary vortices are evident 
close to the surface of the cylinder. 
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Figure 19. Stream-function and vorticity contours: Re = 100, K c  = 12, t = 66.027, 67.940 and 69.854 
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Figure 20. Stream fun( :tion and vorticity contours: Re = 100, K c  = 12, t = 77.510, 79.424 and 81.337 
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Figure 21. Stream function and vorticity contours: Re = 100, K c  = 12, t = 94.735, 99.519 and 104.304 
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Figure 23. Tangential velocity profiles: Re = 100, K c  = 12, t =  99.5 19 
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Figure 24. Drag and lift coefficients: Re = 1O00, K c  = 12 

ROUGH MESH RESULTS FOR ORBITAL FLOW PAST A CYLINDER 

There is surprisingly good qualitative agreement between the results obtained from the hybrid 
and rough schemes. Not only does the flow exhibit similar characteristics, but the drag and lift 
coefficients have the same form with time. 

Figure 26 shows the variations in C ,  and C ,  with time for a Reynolds number of 100 over a 
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Figure 25. Stream-function contours: Re = 1O00, K c  = 12 
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Figure 27. Stream-function and vorticity contours: Re = 100, K c  = 8, t = 25 

Figure 28. Stream-function and vorticity contours: Re = 100, K c  = 36, t = 65 
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Figure 29. Drag and lift coefficients: Re = 200, K c  = I2 and 24 

range of Keulegen-Carpenter numbers from 8 to 36. At the lowest value of 8, inertia is the 
dominant force component. After the first cycle there are large fluctuations in both drag and 
lift as the vortices rotate around the orbit while being deflected outwards. Vortex shedding 
occurs rapidly and corresponds to a Strouhal number of 0.4. The flow pattern seems disorganized, 
as shown in Figure 27. 

Increasing the Keulegan-Carpenter number through the intermediate range from 12 to 24 
has the effect of lowering the Strouhal number to almost 02. The fluctuations that result when 
early detached vortices collide with the cylinder are less dramatic. With a large Keulegan-Car- 
penter number of 36 the impact of the first vortex is relatively small. After some time there 
is evidence of a curved Karman-type vortex street which agrees closely with flow visualizations 
obtained by ChaplinZ9 (see Figure 28). In addition, the mean drag coefficient and the amplitude 
of the fluctuating lift coefficient become smaller with increasing Keulegan-Carpenter number. 

Similar results were obtained by varying the Keulegan-Carpenter number from 12 to 36 for 
a Reynolds number of 200. The vortices that leave the cylinder are larger, and so affect the drag 
and lift coefficients more. The coefficients obtained at the early stages of the flow development 
for Keulegan-Carpenter numbers of 12 and 24, are given in Figure 29. 
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Orbital flow with a Keulegan-Carpenter number of 12 can promote vortex shedding at a low 
Reynolds number of 40. This is due to the pronounced asymmetry of the wake. 

CONCLUSIONS 

The results obtained, using both rough and hybrid meshes, compare favourably with those 
presented by Thoman and S z e ~ c z y k ~ . ~ ~  for stationary and rotating cylinders in uniform flow. 
The rough mesh has the advantage of needing less computational time than the hybrid mesh. 
However, boundary layer profiles are not obtained with the rough mesh, and also separation 
points cannot be modelled properly. Even so, useful information on the hydrodynamic processes 
is obtained cheaply. The drag coefficient was consistently overpredicted by the hybrid mesh. 
This is perhaps due to the detached vortices not being dissipated by viscosity rapidly enough. 
However, the hybrid scheme enabled the separation points to be determined from consideration 
of the velocity profiles through the boundary layers-a most important advantage. The hybrid 
mesh scheme presented here uses a finite-difference quotient method for the inner region which 
results in improved spatial accuracy within the boundary layer. 

For intermediate and low Keulegan-Carpenter numbers the flow sequence is as follows. At 
first, surface vorticity dominates the flow. A vortex detaches from behind the cylinder and moves 
around the orbit, eventually colliding with the cylinder causing a sudden reduction in drag. 
Meanwhile, other vortices detach from the cylinder and, after some time, there are several vortices 
moving around the orbit. The positions and strengths of these vortices influence the shape of 
the orbit, distorting it from circular to pear-shaped, elliptical, ‘rectangular’ or other configurations. 
These vortices gradually spiral away from the centre of the orbit and their cumulative presence 
eventually prevents any from colliding with the cylinder. The angular positions of the stagnation 
and separation points are also sensitive to the arrangement of vortices in the flow at any particular 
instant. This would suggest that the use ofdiscrete vortex models in which the separation points are 
fixed is unsuitable for orbital flow simulation. 

Good qualitative agreement is achieved between results obtained from the hybrid and rough 
schemes and flow visualizations (see ChaplinZ9 and Coutanceau and Menard”) from the rough 
grid results the mean drag coefficient and the amplitude of the fluctuating lift coefficient reduce 
with increasing Keulegan-Carpenter number. Inertia seems to dominate low Keulegan- 
Carpenter number flows. At high Keulegan-Carpenter numbers, a Karman vortex street is 
established and drag is the dominant force. 

Although finite-difference Navier-Stokes models are invalid for the post-critical range of 
Reynolds numbers usually encountered when considering wave loading on offshore structures, 
they do give useful information at  low Reynolds numbers where the flow is laminar. It is 
reasonable for the results from these models to be extrapolated in order to cover the range of 
‘sub-critical’ Reynolds numbers in which the boundary layers remain laminar, although there 
is turbulence in the wake. Discrete vortex models suffer from empiricism and Navier-Stokes 
models incorporating turbulence are beyond present capabilities. Therefore, laminar finite- 
difference Navier-Stokes models are most useful for this type of flow problem. 
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